THE ZETA RETICULI INCIDENT
The two stars are known as Zeta 1 Reticuli and Zeta 2 Reticuli, or together, simply known as Zeta Reticuli. They are each fifth magnitude stars -- barely visible to the unaided eye -- located in the obscure southern constellation Reticulum. This southerly sky location makes Zeta Reticuli invisible to observers north of Mexico City's latitude.
The weird circumstances that we have dubbed “The Zeta Reticuli Incident” sound like they come straight from the UFO pages in one of those tabloids sold in every supermarket. But this is much more than a retelling of a famous UFO incident; it’s an astronomical detective story that at times hovers on that hazy line that separates science from fiction. It all started this way:
The Betty Hill Star Map as Interpreted by Ms. Marjorie Fish
But the Hills are troubled by unexplained dreams and anxiety about two hours of their trip that they can’t account for. Betty, a social worker, asks advice from a psychiatrist friend. He suggests that the memory of that time will be gradually restored over the next few months -- but it never is. Two years after the incident, the couple are still bothered by the missing two hours, and Barney’s ulcers are acting up. A Boston psychiatrist, Benjamin Simon, is recommended, and after several months of weekly hypnosis sessions the bizarre events of that night in 1961 are revealed. A short time later a UFO group leaks a distorted version of the story to the press and the whole thing blows up. The Hills reluctantly disclose the entire story.
Can we take this dramatic scenario seriously? Did this incredible contact with aliens actually occur or is it some kind of hallucination that affected both Barney and Betty Hill? The complete account of the psychiatric examination from which the details of the event emerged is related in John G. Fuller’s “The Interrupted Journey” (Dial Press, 1966), where we read that after the extensive psychiatric examination, Simon concluded that the Hills were not fabricating the story. The most likely possibilities seem to be:
There are other cases of alleged abductions by extraterrestrial humanoids. The unique aspect of the Hills’ abduction is that they remembered virtually nothing of the incident.
Intrigued by the Hills’ experience, J. Allen Hynek, chairman of the department of astronomy at Northwestern University, decided to investigate. Hynek described how the Hills recalled the details of their encounter in his book, “The UFO Experience” (Henry Regnery Company, 1972):
A number of scientists, including Hynek, have discussed this incident at length with Barney and Betty Hill and have questioned them under hypnosis. They concur with Simon’s belief that there seems to be no evidence of outright fabrication or lying. One would also wonder what Betty, who has a master’s degree in social work and is a supervisor in the New Hampshire Welfare Department, and Barney, who was on the governor of New Hampshire’s Civil Rights Commission, would have to gain by a hoax? Although the Hills didn’t, several people have lost their jobs after being associated with similarly unusual publicity.
Stanton T. Friedman, a nuclear physicist and the nation’s only space scientist devoting full time to researching the UFO phenomenon, has spent many hours in conversation with the Hills.
So the experience remains a fascinating story despite the absence of proof that it actually happened. Anyway -- that’s where things were in 1966 when Ms. Marjorie Fish, an Ohio schoolteacher, amateur astronomer and member of Mensa, became involved. She wondered if the objects shown on the map that Betty Hill allegedly observed inside the vehicle might represent some actual pattern of celestial objects. To get more information about the map she decided to visit Betty Hill in the summer of 1969 (Barney Hill died in early 1969). Here is Ms. Fish’s account of that meeting:
So much for the background material on the Hill incident (if you want more details on the encounter, see Fuller’s book). For the moment we will leave Marjorie Fish back in 1969 trying to interpret Betty Hill’s reproduction of the map. There is a second major area of background information that we have to attend to before we can properly discuss the map. Unlike the bizarre events just described, the rest is pure astronomy.
According to the most recent star catalogs, there are about 1,000 known stars within a radius of 55 light-years of the Sun. What are those other stars like? A check of the catalogs shows that most of them are faint stars of relatively low temperature -- a class of stars astronomers call main sequence stars. The Sun is a main sequence star along with most of the other stars in this part of the Milky Way galaxy, as the following table shows:
Typical giant stars are Arcturus and
Capella. Antares and Betelgeuse are members of the ultra-rare
supergiant class. At the other end of the size and brightness scale the white dwarfs are stellar cinders -- the remains of once brilliant suns -- a perfect example is
Sirius B, the white dwarf companion to the brilliant Sirius A seen in the
constellation Canis Major. For reasons that will soon become clear we can remove these classes of stars from our discussion and concentrate on the main sequence stars whose characteristics are shown in the table.
Each class is subdivided into 10 subcategories. For example, an A0 star is hotter, brighter and more massive than an A1, which is above an A2, and so on through A9.
This table supplies much additional information and shows how a slightly hotter and more massive star turns out to be much more luminous than the Sun, a G2 star. But the bright stars pay dearly for their splendor. It takes a lot of stellar fuel to emit vast quantities of light and heat. The penalty is a short lifespan as a main sequence star. Conversely, the inconspicuous, cool M stars may be around to see the end of the universe -- whatever that might be. With all these facts at hand we’re now ready to tackle the first part of the detective story.
Let’s suppose we wanted to make our own map of a trip to the stars. We will limit ourselves to the 55 light-year radius covered by the detailed star catalogs. The purpose of the trip will be to search for intelligent life on planets that may be in orbit around these stars. We would want to include every star that would seem likely to have a life-bearing planet orbiting around it. How many of these thousand-odd stars would we include for such a voyage and which direction would we go (for the moment, we’ll forget about the problem of making a spacecraft that will take us to these stars and we’ll assume that we’ve got some kind of vehicle that will effortlessly transport us to wherever we want to go)? We don’t want to waste our time and efforts -- we only want to go to stars that we would think would have a high probability of having planets harboring advanced life forms. This seems like a tall order. How do we even begin to determine which stars might likely have such planets?
The first rule will be to restrict ourselves to life as we know it, the kind of life that we are familiar with here on Earth -- carbon based life. Science fiction writers are fond of describing life forms based on chemical systems that we have been unable to duplicate here on Earth -- such as silicon based life or life based on the ammonium hydroxide molecule instead of on carbon. But right now these life forms are simply fantasy -- we have no evidence that they are in fact possible. Because we don’t even know what they might look like -- if they’re out there -- we necessarily have to limit our search to the kind of life that we understand.
Our kind of life -- life as we know it -- seems most likely to evolve on a planet that has a stable temperature regime. It must be at the appropriate distance from its sun so that water is neither frozen nor boiled away. The planet has to be the appropriate size so that its gravity doesn’t hold on to too much atmosphere (like Jupiter) or too little (like Mars). But the main ingredient in a life-bearing planet is its star. And its star is the only thing we can study since planets of other stars are far too faint to detect directly. The conclusion we can draw is this: The star has to be like the Sun.
So far, we have assumed all stars have planets, just as our Sun does. Yet spectroscopic studies of stars of class F4 and brighter reveal that most of them are in fact unlike our Sun in a vital way -- they are rapidly rotating stars. The Sun rotates once in just under a month, but 60 percent of the stars in the F0 to F4 range rotate much faster. And almost all A stars are rapid rotators too. It seems, from recent studies of stellar evolution that slowly rotating stars like the Sun rotate slowly because they have planets. Apparently the formation of a planetary system robs the star of much of its rotational momentum (because angular momentum of the whole solar system that formed from interstellar gas and debris must be conserved ... an analogy is an ice skater that has arms extended as he/she spins, then he/she brings in arms close to the body in order to spin much faster. For a star with planets, the angular momentum is taken up by the star and its planets. For a star without planets, the angular momentum must be with the star, alone, resulting in much faster star rotation).
For two reasons, then, we eliminate stars of class F4 and above:
Another problem environment for higher forms of life is the multiple star system. About half of all stars are born in pairs, or small groups of three or more. Our Sun could have been part of a double star system. If Jupiter was 80 times more massive it would be an M6 red dwarf star. If the stars of a double system are far enough apart there is no real problem for planets sustaining life (see “Planet of the Double Sun,” September 1974). But stars in fairly close or highly elliptical orbits would alternately fry or freeze their planets. Such planets would also likely have unstable orbits. Because this is a potentially troublesome area for our objective, we will eliminate all close and moderately close pairs of systems of multiple stars.
Further elimination is necessary according to the catalogs. Some otherwise perfect stars are labeled “variable.” This means astronomers have observed variations of at least a few percent in the star’s light output. A one percent fluctuation in the Sun would be annoying for us here on Earth. Anything greater would cause climatic disaster. Could intelligent life evolve under such conditions, given an otherwise habitable planet? It seems unlikely. We are forced to “scratch” all stars suspected or proven to be variable.
This still leaves a few F stars, quite a few G stars, and hoards of K and M dwarfs. Unfortunately most of the Ks and all of the Ms are out. Let’s find out why.
These stars quite likely have planets. Indeed, one M star -- known as Barnard’s star -- is believed to almost certainly have at least one, and probably two or three, Jupiter sized planets. Peter Van de Kamp of the Sproul Observatory at Swarthmore College, Pennsylvania, has watched Barnard’s star for over three decades and is convinced that a “wobbling” motion of that star is due to perturbations (gravitational “pulling and pushing”) caused by its unseen planets (Earth sized planets cannot be detected in this manner).
But the planets of M stars and the K stars below K4 have two serious handicaps that virtually eliminate them from being abodes for life. First, these stars fry their planets with occasional lethal bursts of radiation emitted from erupting solar flares. The flares have the same intensity as those of our Sun, but when you put that type of flare on a little star it spells disaster for a planet that is within, say, 30 million miles. The problem is that planets have to be that close to get enough heat from these feeble suns. If they are farther out, they have frozen oceans and no life.
The close-in orbits of potential Earthlike planets of M and faint K stars produce the second dilemma -- rotational lock. An example of rotational lock is right next door to us. The moon, because of its nearness to Earth, is strongly affected by our planet’s tidal forces. Long ago our satellite stopped rotating and now has one side permanently turned toward Earth. The same principles apply to planets of small stars that would otherwise be at the right distance for moderate temperatures. If rotational lock has not yet set in, at least rotational retardation would make impossibly long days and nights (as evidenced by Mercury in our solar system).
What stars are left after all this pruning? All of the G stars remain along with F5 through F9 and K0 through K4. Stephen Dole of the Rand Corporation has made a detailed study of stars in this range and suggests we should also eliminate F5, F6 and F7 stars because they balloon to red giants before they reach an age of five billion years. Dole feels this is cutting it too fine for intelligent species to fully evolve. Admittedly this is based on our one example of intelligent life -- us. But limited though this parameter is, it is the only one we have. Dole believes the K2, K3 and K4 stars are also poor prospects because of their feeble energy output and consequently limited zone for suitable Earthlike planets.
Accepting Dole’s further trimming we are left with single, nonvariable stars from F8 through all the G-type stars to K1. What does that leave us with? Forty-six stars.
Now we are ready to plan the trip. It’s pretty obvious that Tau Ceti is our first target. After that, the choice is more difficult. We can’t take each star in order or we would be darting all over the sky. It’s something like planning a vacation trip. Let’s say we start from St. Louis and want to hit all the major cities within a 1,000 mile radius. If we go west, all we can visit is Kansas City and Denver. But northeast is a bonanza: Chicago, Detroit, Cleveland, Pittsburgh, Philadelphia, New York and more. The same principle applies to the planning of our interstellar exploration. The plot of all 46 candidate stars reveals a clumping in the direction of the constellations Cetus and Eridanus. Although this section amounts to only 13 percent of the entire sky, it contains 15 of the 46 stars, or 33 percent of the total. Luckily Tau Ceti is in this group, so that’s the direction we should go (comparable to heading northeast from St. Louis). If we plan to visit some of these solar type stars and then return to Earth, we should try to have the shortest distance between stops. It would be a waste of exploration time if we zipped randomly from one star to another.
Now we are ready to return to the map drawn by Betty Hill. Marjorie Fish reasoned that if the stars in the Hill map corresponded to a patter of real stars -- perhaps something like we just developed, only from an alien’s viewpoint -- it might be possible to pinpoint the origin of the alleged space travelers. Assuming the two stars in the foreground of the Hill map were the “base” stars (the Sun, a single star, was ruled out here), she decided to try to locate the entire pattern. She theorized that the Hill map contained only local stars since no concentration would be present if a more distant viewpoint was assumed and if both “us” and the alien visitors’ home base were to be represented.
Let’s assume, just as an astronomical exercise, that the map does show the Sun and the star that is “the sun” to the humanoids. We’ll take the Hill encounter at face value, and see where it leads.
Since the aliens were described as “humanoid” and seemed reasonably comfortable on this planet, their home planet should be basically like ours. Their atmosphere must be similar because the Hills breathed without trouble while inside the ship, and the aliens did not appear to wear any protective apparatus. And since we assume their biology is similar to ours, their planet should have the same temperature regime as Earth (Betty and Barney did say it was uncomfortably cold in the ship). In essence, then, we assume their home planet must be very Earthlike. Based on what we discussed earlier it follows that their sun would be on our list if it were within 55 light-years from us.
The lines on the map, according to Betty Hill, were described by the alien as “trade routes” or “places visited occasionally” with the dotted lines as “expeditions.” Any interpretation of the Betty Hill map must retain the logic of these routes (i.e. the lines would link stars that would be worth visiting).
Keeping all this in mind, Marjorie Fish constructed several three-dimensional models of the solar neighborhood in hopes of detecting the pattern in the Hill map. Using beads dangling on threads, she painstakingly recreated our stellar environment. Between August 1968 and February 1973, she strung beads, checked data, searched and checked again. A suspicious alignment, detected in late 1968, turned out to be almost a perfect match once new data from the detailed 1969 edition of the Catalog of Nearby Stars became available (this catalog is often called the “Gliese catalog” -- pronounced “glee-see” -- after its principal author, Wilhelm Gliese).
The following table lists all known stars within a radius of 54 light-years that are single or part of a wide multiple star system. They have no known irregularities or variabilities and are between 0.4 and 2.0 times the luminosity of the Sun. Thus, a planet basically identical to Earth could be orbiting around any one of them (Data from the Catalog of Nearby Stars, 1969 edition, by Wilhelm Gliese).
To summarize, then:
Walter Mitchell, professor of astronomy at Ohio State University in Columbus, has looked at Marjorie Fish’s interpretation of the Betty Hill map in detail and tells us,
During their examination of the map, Mitchell and some of his students inserted the positions of hundreds of nearby stars into a computer and had various space vistas brought up on a cathode ray tube readout. They requested the computer to put them in a position out beyond Zeta Reticuli looking toward the Sun. From this viewpoint the map pattern obtained by Marjorie Fish was duplicated with virtually no variations. Mitchell noted an important and previously unknown fact first pointed out by Ms. Fish: The stars in the map are almost in a plane; that is, they fill a wheel shaped volume of space that makes star hopping from one to another easy and the logical way to go -- and that is what is implied by the map that Betty Hill allegedly saw.
By various lines of statistical reasoning he concludes that the chances of finding a match among 16 stars of a specific spectral type among the thousand-odd stars nearest the Sun is “at least 1,000 to 1 against.”
Saunders, who has developed a monumental computerized catalog of more than 60,000 UFO sightings, tells us that the Hill case is not unique in its general characteristics -- there are other known cases of alleged communication with extraterrestrials. But in no other case on record have maps ever been mentioned.
Mark Steggert of the Space Research Coordination Center at the University of Pittsburgh developed a computer program that he calls PAR (for Perspective Alteration Routine) that can duplicate the appearance of star fields from various viewpoints in space.
Steggert zeroed in on possibly the only real bone of contention that anyone has had with Marjorie Fish’s interpretation: The data on some of the stars may not be accurate enough for us to make definitive conclusions. For example, he says the data from the Smithsonian Astrophysical Observatory Catalog, the Royal Astronomical Society Observatory Catalog, and the Yale Catalog of Bright Stars,
Other stars have less variations in the data from one catalog to another, but Steggert’s point is valid. The data on some of the stars in the map is just not good enough to make a definitive statement (the fact that measurements of most of the stars in question can only be made at the relatively poor equipped southern hemisphere observatories accounts for the less reliable data).
Using information on the same 15 stars from the Royal Observatory catalog (Annals #5), Steggert reports that the pattern does come out differently because of the different data, and Gliese 59 shows the largest variation. The Gliese catalog uses photometric, trigonometric and spectroscopic parallaxes and derives a mean from all three after giving various mathematical weights to each value.
This point of view is shared by Jeffrey L. Kretsch, an undergraduate student who is working under the advisement of J. Allen Hynek at Northwestern University in Evanston, Ill. Like Steggert, he too checked Marjorie Fish’s pattern and found no error in the work. But Kretsch reports that when he reconstructed the pattern using trigonometric distance measurements instead of the composite measures in the Gliese catalog, he found enough variations to move Gliese 95 above the line between Gliese 86 and Tau 1 Eridani.
The fact that the pattern is less of a “good fit” using data from other sources leads Kretsch and others to wonder what new observations would do. Would they give a closer fit? Or would the pattern become distorted? Marjorie Fish was aware of the catalog variations, but has assumed the Gliese catalog is the most reliable source material to utilize.
Is the Gliese catalog the best available data source. According to several astronomers who specialize in stellar positions, it probably is. Peter Van de Kamp says, “It’s first rate. There is none better.” He says the catalog was compiled with extensive research and care over many years.
A lot of the published trigonometric parallaxes on the stars beyond 30 light-years are not as accurate as they could be, according to Kyle Cudworth of Yerkes Observatory.
The scientific director of the U.S. Naval Observatory, K.A. Strand, is among the world’s foremost authorities on stellar distances for nearby stars. He believes the Gliese catalog “is the most complete and comprehensive source available.” Frank B. Salisbury of the University of Utah has also examined the Hill and Fish maps.
Salisbury is one of the few scientists who has spent some time on the UFO problem and has written a book and several articles on the subject. A professor of plant physiology, his biology expertise has been turned to astronomy on several occasions while studying the possibility of biological organisms existing on Mars.
Salisbury insists that while psychological factors do play an important role in UFO phenomena, the Hill story does represent one of the most credible reports of incredible events. The fact that the story and the map came to light under hypnosis is good evidence that it actually took place. “But it is not unequivocal evidence,” he cautions.
Elaborating on this aspect of the incident, Mark Steggert offers this:
Is it at all possible we are faced with a hoax?
“Highly unlikely,” says Salisbury -- and the other investigators agree. One significant fact against a charade is that the data from the Gliese catalog was not published until 1969, five years after the star map was drawn by Betty Hill. Prior to 1969, the data could only have been obtained from the observatories conducting research on the specific stars in question. It is not uncommon for astronomers not to divulge their research data -- even to their colleagues -- before it appears in print. In general, the entire sequence of events just does not smell of falsification. Coincidence, possibly; hoax, improbable. Where does all this leave us? Are there creatures inhabiting a planet of Zeta 2 Reticuli? Did they visit Earth in 1961? The map indicates that the Sun has been “visited occasionally.” What does that mean? Will further study and measurement of the stars in the map change their relative positions and thus distort the configuration beyond the limits of coincidence?
The fact that the entire incident hinges on a map drawn under less than normal circumstances certainly keeps us from drawing a firm conclusion. Exobiologists are united in their opinion that the chance of us having neighbors so similar to us, apparently located so close, is vanishingly small. But then, we don’t even know for certain if there is anybody at all out there -- anywhere -- despite the Hill map and pronouncements of the most respected scientists.
The only answer is to continue the search. Someday, perhaps soon, we will know.
Hypothetical Voyage To Nearby Solar Type Stars
|